Review of Predictability and Model Error Issues Related to Tropical Cyclones

Chris Davis NCAR

Limitations on Forecast Accuracy

- Fundamental
 - Predictability limitations
 - Definition of intensity; metrics of accuracy
- Addressable error sources
 - Ocean coupling
 - Resolution: resolve eye wall
 - Large-scale environment (shear, etc.)
- Difficult to address
 - Air-sea fluxes (enthalpy flux)
 - Cloud physics (particle sizes)
 - Aerosols
 - Better observations of storm structure

Different Perspectives

Intensity (Maximum Wind Speed) Probability Table Hurricane Ike Advisory Number 12 11:00 PM AST Sep 3 2008

Ground relative, probabilistic

Storm relative, deterministic

Predictability

Three time scales

- Convection: $H/w \sim 10^3 s$
- Vortex: $R/V \sim 10^4 s$
- Synoptic-scale: $L/U \sim 10^5$ s.

Implications

- Convective elements unpredictable
- Vortex Rossby waves, inner rainbands very hard to predict (rapid intensification)
- Nearly everything we can predict is on the synoptic scale

What is included in large scale?

- Steering flow
- Lower-boundary conditions
- Vertical wind shear
- Outer wind radii
 - Forecasts from NCAR
 Advanced Hurricane
 Research WRF (AHW)
 show long time-scale
 decay of skill

Vortex-scale Fluctuations

MM5 Simulations, dx=5km

Intrinsic fluctuations of inner core of idealized hurricane ~10 m/s.

Van Sang et al, 2008: QJRMS

Intensity Fluctuations

Felix (9/1/12Z)

Handled better at high-resolution, but still essentially no skill

Verification of Forecasts: Errors in Observations

- Maximum 1-m sustained 10-m wind
 - Highly localized quantity
 - Uncertainty: Reconnaissance vs. no recon.
 - 5 knot binning (NHC) probably best case
- Minimum sea-level pressure
 - Errors scale as v²: large for strong storms (nearly 20 mb for Cat 5)
- Storm position
 - Essentially zero error for strong storms
 - Surprisingly large uncertainties in weak systems (depressions or strongly sheared storms)

Ensemble Error and Spread in Position

From Ryan Torn, U. Albany, SUNY

Cool wake behind hurricane: How much cooling under eye wall?

Black et al., 2007: BAMS

Upper Ocean Structure

Varying Horizontal Grid Spacing

Fig. 2. (a) The NOAA/Atlantic Oceanographic and Meteorological Laboratory (AOML)/HRD airborne radarobserved reflectivity (dBZ, over an area of 360 km x 360 km) and the MM5-simulated rain rate (mm h⁻¹) using (b) 1.67-, (c) 5-, and (d) 15-km grid resolution in Hurricane Floyd at 0000 UTC 14 Sep 1999.

Varying Horizontal Grid Spacing

AHW forecasts of Rita and Felix with 4-km and 1.33-km innermost nests: more difference for smaller storm (Felix).

Turbulent Mixing

Bryan and Rotunno, 2010

Intensity highly dependent on horizontal mixing length (not vertical), 2-D and 3-D.

FIG. 2: Maximum azimuthally averaged azimuthal velocity, $\langle v \rangle_{\rm max}$, from the axisymmetric model (red) and the three-dimensional model (black). All simulations use l_v = 200 m.

PBL

Nolan et al., 2009:

Max winds not affected too much by PBL

Results more like each other than the real storm: however, could be many reasons for this.

Contoured Frequency by Altitude Diagrams (CFADS)

Contoured Frequency by Altitude Diagrams (CFADS)

Microphysical Influence on Intensity

Felix (9/1/12Z)

Air-sea Exchange

On the coupling of initial condition and physics errors

Initial Conditions for Erika 0902/06Z (cross section of meridional velocity)

HWRF PROD ERIKA 061 E-W CROSS SECT LAT=16.90

No tilt (HWRF) vs. tilt (AHW)

f000 mean wind and spread valid 2009090206

Erika 12-km vs. 1.33-km nest: Min SLP

Initial Conditions vs. Physics

Erika (9/2) - Maximum Wind

Concluding Remarks

- Significant predictability limits to intensity forecasts
 - Inner core fluctuations vs. external influences
- Large uncertainty to microphysics, air-sea interaction and turbulence: inter-relationships?
 - Turbulence effects entrainment; transport of aerosol
 - Details of fluxes dependent on many unknowns or complex processes (spray, ocean waves, etc)
- Well-defined tests needed to unravel sources of physical errors versus initial conditions: not always possible